Benchmark DAC2 DX Manuel d'instructions Page 36

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 73
  • Table des matières
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 35
DAC2 DX Instruction Manual Rev B Page 36
HPA2 Headphone Amplifier
The DAC2 headphone output is driven by
Benchmarks signature HPA2 headphone
amplifier. This high-current, high-output
amplifier has an output impedance of near 0-
Ohms. It is designed to drive loads as low as
30 Ohms without any increase in distortion.
It also has sufficient amplitude to drive low-
sensitivity 600-Ohm headphones.
The HPA2 includes current-limiting circuits
that fully protect against damage from short
circuits. This is important because the right
channel of a headphone amplifier will
experience a short whenever a mono phone
plug is inserted into the stereo headphone
jack. Shorts may also occur when a plug is
partially inserted.
'0-Ohm' Output Impedance
Most headphone amplifiers use series
resistors to maintain stability and protect
against short-circuit conditions. These
resistors are usually at least 30 Ohms, and
have a negative impact on performance. A
headphone amplifier with series resistors may
measure very well when driving resistive
loads. However, the same amplifier will
measure very poorly when driving a
headphone load. Unfortunately, most
manufacturers do not specify headphone
amplifier performance with anything other
than ideal resistive loads. Our measurements
show that headphones do not behave like
resistive loads.
Headphone Performance
In our tests we have measured substantial
distortion across resistors that are wired in
series with headphones. We conducted
measurements with a variety of headphones.
In general, distortion increases as headphone
impedance decreases. This distortion can be
eliminated with a properly designed 0-Ohm
headphone amplifier.
The performance of the HPA2 does not
change when headphones are driven. THD+N
measurements for no-load, 30-Ohm resistive
loads, 30-Ohm headphone loads, and 600-
Ohm headphone loads are virtually identical.
The HPA2 will substantially improve the
sound of 30 and 60-Ohm headphones. It will
make very noticeable improvements with
600-Ohm headphones.
Differential Amplifiers
Differential amplifiers remove common-mode
distortion components from the D/A converter
outputs. This feature is critical for achieving
low-distortion in down-stream devices.
Benchmark addresses common-mode
distortion so that it will not cause distortion in
power amplifiers and other connected
devices. Common-mode distortion can cause
audible distortion while escaping the scrutiny
of an audio analyzer. The balanced and
unbalanced outputs on the DAC2 deliver very
similar performance.
Many D/A converters omit the differential
amplifiers after the converters.
Specifications usually ignore common-mode
distortion. A balanced signal with high
common-mode distortion can measure just
fine when feeding a precisely balanced input
on a high-quality audio analyzer. However,
any imbalance in a downstream device will
expose the common-mode distortion.
UltraLock2 Clock System
Accurate 24-bit audio conversion requires a
very low-jitter conversion clock. Jitter can
very easily turn a 24-bit converter into a 16-
bit converter (or worse). There is no point in
buying a 24-bit converter if clock jitter has
not been adequately addressed.
Jitter is present on every digital audio
interface. This type of jitter is known as
interface jitter and it is present even in the
most carefully designed audio systems.
Interface jitter accumulates as digital signals
travel down a cable and from one digital
device to the next. If we measure interface
jitter in a typical system we will find that it is
10 to 10,000 times higher than the maximum
allowable level for accurate 24-bit conversion.
Vue de la page 35
1 2 ... 31 32 33 34 35 36 37 38 39 40 41 ... 72 73

Commentaires sur ces manuels

Pas de commentaire